Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.195
Filtrar
1.
Neuropharmacology ; 247: 109861, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331315

RESUMO

Sleep is an instinct behavior, and its significance and functions are still an enigma. It is expressed throughout one's life and its loss affects psycho-somatic and physiological processes. We had proposed that it might maintain a fundamental property of the neurons and the brain. In that context, it was shown that sleep, rapid eye movement sleep (REMS) in particular, by regulating noradrenaline (NA), maintains the brain excitability. It was also reported that sleep-loss affected memory, reaction time and decision-making ability among others. However, as there was lack of clarity on the cause-and-effect relationship as to how the sleep-loss could affect these basic behaviors, their association was questioned and it was difficult to propose a cure or at least ways and means to ameliorate the symptoms. Also, we wanted to conduct the studies in a simpler model system so that conducting future molecular studies might be easier. Hence, using zebrafish as a model we evaluated if sleep-loss affected the basic decision-making ability, a cognitive process and if the effect was induced by NA. Indeed, our findings confirmed that upon sleep-deprivation, the cognitive decision-making ability of the prey zebrafish was compromised to protect itself by running away from the reach of the exposed predator Tiger Oscar (TO) fish. Also, we observed that upon sleep-loss the axonal arborization of the prey zebrafish brain was reduced. Interestingly, the effects were prevented by prazosin (PRZ), an α1-adrenoceptor (AR) antagonist and when the zebrafish recovered from the lost sleep.


Assuntos
Norepinefrina , Peixe-Zebra , Animais , Norepinefrina/farmacologia , Privação do Sono , Sono , Neurônios , Receptores Adrenérgicos alfa 1/fisiologia
2.
Fundam Clin Pharmacol ; 37(6): 1170-1178, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37392126

RESUMO

BACKGROUND: RS17053 is classed as an α1A -adrenoceptor selective antagonist. OBJECTIVES: We have examined its profile of action at all subtypes of α1 -adrenoceptor. METHODS: Noradrenaline (NA) evoked contractions of rat vas deferens involve α1D -adrenoceptors in phasic contractions and α1A -adrenoceptors in tonic contractions. Contractions of rat aorta to NA involve α1D - and α1B -adrenoceptors. RESULTS: RS17053 (10-5  M) shifted NA potency and virtually abolished tonic contractions to NA, with little or limited effect on phasic contractions. The α1D -adrenoceptor antagonist BMY7378 (3 × 10-7 M) significantly inhibited the remaining phasic component of the contractions, and the α1A -adrenoceptor antagonist RS100329 (10-7  M) inhibited further the residual tonic contraction. Hence, RS17053 shows high selectivity for α1A -adrenoceptors over α1D -adrenoceptors in rat vas deferens. However, RS17053 (10-5  M) produced a large shift in the potency of NA in rat aorta, with a pKB of 6.82. Large shifts of NA potency in rat aorta involve α1B -adrenoceptor blockade. CONCLUSION: Results in rat vas deferens demonstrate low potency of RS17053 at α1D -adrenoceptors, but results from rat aorta can only be explained as demonstrating α1B -adrenoceptor antagonism by RS17053. RS17053 may be a useful pharmacological tool when reclassified as a mainly α1A - and to a lesser extent α1B -adrenoceptor antagonist with little effect at α1D -adrenoceptors.


Assuntos
Prazosina , Ducto Deferente , Masculino , Ratos , Animais , Prazosina/farmacologia , Ducto Deferente/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Norepinefrina/farmacologia , Aorta
3.
Biol Res Nurs ; 25(2): 198-209, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36203228

RESUMO

Food restriction (FR) enhances sensitivity to cardiopulmonary reflexes and α1-adrenoreceptors in females in the presence of hypotension. However, the effect of FR on cardiopulmonary and vascular function in males is not well-understood. This study examines the effects of FR on cardiopulmonary, isolated arterial function, and potential underlying mechanisms. Male Sprague-Dawley (SD) rats were randomly divided into 3 groups and monitored for 5 weeks: (1) control (n = 30), (2) 20% food reduction (FR20, n = 30), and (3) 40% food reduction (FR40, n = 30). Non-invasive blood pressure was measured twice a week. Pulmonary arterial pressure (PAP) was measured using isolated/perfused lungs. The isolated vascular reactivity was assessed using double-wire myographs. FR rats exhibited a lower mean arterial pressure and heart rate; however, only the FR40 group exhibited statistically significant differences. We observed that FR enhanced sensitivity (EC50) to vasoconstriction induced by the α1-adrenoreceptor phenylephrine (PhE) but not to serotonin, U46619, or high K+ in the mesenteric arteries. PhE-mediated vasoconstriction in the mesenteric arteries was eliminated in the presence of the eNOS inhibitor (L-NAME). In addition, incubation with NOX2/4 inhibitors (apocynin, GKT137831, and VAS2870) and the reactive oxygen species (ROS) scavenger inhibitor (Tiron) eliminated the differences in PhE-mediated vasoconstriction, but the cyclooxygenase inhibitor (indomethacin) in the mesenteric arteries did not. Augmentation of α1-adrenergic-mediated contraction via the inhibition of the eNOS-NO pathway increased the activation of ROS through NOX2/4 in response to FR. Reduced eNOS-NO signaling may be a pathophysiological counterbalance to prevent hypovolemic shock in response to FR.


Assuntos
Adrenérgicos , Ingestão de Alimentos , Artérias Mesentéricas , Receptores Adrenérgicos alfa 1 , Vasoconstrição , Animais , Masculino , Ratos , Adrenérgicos/farmacologia , Ingestão de Alimentos/fisiologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Óxido Nítrico/metabolismo , Fenilefrina/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia
4.
J Pharmacol Sci ; 148(2): 214-220, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35063136

RESUMO

Pulmonary hypertension (PH) is a severe and progressive disease that causes elevated right ventricular systolic pressure, right ventricular hypertrophy and ultimately right heart failure. However, the underlying pathophysiologic mechanisms are poorly understood. We previously showed that 3,4-l-dihydroxylphenyalanine (DOPA) sensitizes vasomotor response to sympathetic tone via coupling between the adrenergic receptor alpha1 (ADRA1) and a G protein-coupled receptor 143 (GPR143), a DOPA receptor. We investigated whether DOPA similarly enhances ADRA1-mediated contraction in pulmonary arteries isolated from rats, and whether GPR143 is involved in the PH pathogenesis. Pretreating the isolated pulmonary arteries with DOPA 1 µM enhanced vasoconstriction in response to phenylephrine, an ADRA1 agonist, but not to U-46619, a thromboxane A2 agonist or endothelin-1. We generated Gpr143 gene-deficient (Gpr143-/y) rats, and confirmed that DOPA did not augment phenylephrine-induced contractile response in Gpr143-/y rat pulmonary arteries. We utilized a rat model of monocrotaline (MCT)-induced PH. In the MCT model, the right ventricular systolic pressure was attenuated in the Gpr143-/y rats than in WT rats. Phenylephrine-induced cell migration and proliferation were also suppressed in Gpr143-/y pulmonary artery smooth muscle cells than in WT cells. Our result suggests that GPR143 is involved in the PH pathogenesis in the rat models of PH.


Assuntos
Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Monocrotalina/efeitos adversos , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neurotransmissores/genética , Sístole , Função Ventricular Direita/genética , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Hipertrofia Ventricular Direita/etiologia , Técnicas In Vitro , Masculino , Artéria Pulmonar/fisiologia , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Disfunção Ventricular Direita/etiologia
5.
Mol Brain ; 14(1): 55, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726812

RESUMO

Our previous study showed the intrinsic ability of descending noradrenergic neurons projecting from the locus coeruleus to the spinal dorsal horn (SDH) to suppress itch-related behaviors. Noradrenaline and α1A-adrenaline receptor (α1A-AR) agonist increase inhibitory synaptic inputs onto SDH interneurons expressing gastrin-releasing peptide receptors, which are essential for itch transmission. However, the contribution of α1A-ARs expressed in SDH inhibitory interneurons to itch-related behavior remains to be determined. In this study, RNAscope in situ hybridization revealed that Adra1a mRNA is expressed in SDH inhibitory interneurons that are positive for Slc32a1 mRNA (known as vesicular GABA transporter). Mice with conditional knock-out of α1A-ARs in inhibitory interneurons (Vgat-Cre;Adra1aflox/flox mice) exhibited an increase in scratching behavior when induced by an intradermal injection of chloroquine, but not compound 48/80, which are known as models of histamine-independent and dependent itch, respectively. Furthermore, knockout of inhibitory neuronal α1A-ARs in the SDH using the CRISPR-Cas9 system also increased the scratching behavior elicited by chloroquine but not compound 48/80. Our findings demonstrated for the first time that α1A-ARs in SDH inhibitory interneurons contribute to the regulation of itch signaling with preference for histamine-independent itch.


Assuntos
Cloroquina/toxicidade , Interneurônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células do Corno Posterior/fisiologia , Prurido/fisiopatologia , Receptores Adrenérgicos alfa 1/fisiologia , Animais , Sistemas CRISPR-Cas , Feminino , Edição de Genes , Técnicas de Inativação de Genes , Masculino , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Prurido/induzido quimicamente , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Adrenérgicos alfa 1/biossíntese , Receptores Adrenérgicos alfa 1/deficiência , Receptores Adrenérgicos alfa 1/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/biossíntese , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , p-Metoxi-N-metilfenetilamina/farmacologia
6.
Nat Neurosci ; 23(11): 1376-1387, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020652

RESUMO

Astrocytes are critical regulators of CNS function and are proposed to be heterogeneous in the developing brain and spinal cord. Here we identify a population of astrocytes located in the superficial laminae of the spinal dorsal horn (SDH) in adults that is genetically defined by Hes5. In vivo imaging revealed that noxious stimulation by intraplantar capsaicin injection activated Hes5+ SDH astrocytes via α1A-adrenoceptors (α1A-ARs) through descending noradrenergic signaling from the locus coeruleus. Intrathecal norepinephrine induced mechanical pain hypersensitivity via α1A-ARs in Hes5+ astrocytes, and chemogenetic stimulation of Hes5+ SDH astrocytes was sufficient to produce the hypersensitivity. Furthermore, capsaicin-induced mechanical hypersensitivity was prevented by the inhibition of descending locus coeruleus-noradrenergic signaling onto Hes5+ astrocytes. Moreover, in a model of chronic pain, α1A-ARs in Hes5+ astrocytes were critical regulators for determining an analgesic effect of duloxetine. Our findings identify a superficial SDH-selective astrocyte population that gates descending noradrenergic control of mechanosensory behavior.


Assuntos
Astrócitos/fisiologia , Hiperalgesia/fisiopatologia , Locus Cerúleo/fisiologia , Neurônios/fisiologia , Nociceptividade/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Neurônios Adrenérgicos/fisiologia , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Feminino , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Vias Neurais/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Proteínas Repressoras/análise , Corno Dorsal da Medula Espinal/metabolismo
7.
Cell Physiol Biochem ; 54(5): 888-898, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32930525

RESUMO

BACKGROUND/AIMS: Trace amines (TA) are small organic compounds that have neuromodulator activity due to their interaction with some neuron-related receptors, such as trace amine associated receptors (TAARs), α2-adrenergic receptor (α2-AR) and ß-adrenergic receptor (ß-AR). However, there is little information on whether TA and dopamine (DOP) can interact with other adrenergic receptors (ARs) such as the mammalian α1-AR and the bacterial counterpart QseC, which is involved in quorum sensing of some Gram-negative pathogens. The aim of this study was to investigate the interaction of TA and DOP with α1-AR and QseC. METHODS: We performed an in silico study using 3D structure from SWISS MODEL and analyzed the protein interaction via molecular docking using PyMol, PoseView and PyRX 8.0. For the in vitro study, we investigated the QseC kinase activity by measuring the remaining ATP in a reaction containing QseC-enriched membrane incubated together with purified QseB and EPI, TA, DOP, or PTL respectively. We also measured the intracellular Ca++ levels, which represents the α1-AR activation, in LNCAP (pancreatic cell line) cells treated with EPI, TA, DOP and PTL respectively using a fluorescence-based assay. The LNCAP cell proliferation was measured using an MTT-based assay. RESULTS: Our in silico analysis revealed that TAs and DOP have high binding affinity to the human α1-AR and the bacterial adrenergic receptor (QseC), comparable to epinephrine (EPI). Both are membrane-bound kinases. Experimental studies with pancreatic cell line (LNCAP) showed that the TAs and DOP act as α1-AR antagonist by counteracting the effect of EPI. In the presence of EPI, TA and DOP trigger an increase of the intracellular Ca++ levels in the LNCAP cells leading to an inhibition of cell proliferation. Although in silico data suggest an interaction of TA and DOP with QseC, they do not inhibit the kinase activity of QseC, a histidine kinase receptor involved in quorum sensing which is also sensitive to EPI. CONCLUSION: Our study showed that the TAs and DOP act as α1-AR antagonist but no effect was observed for QseC.


Assuntos
Aminas/metabolismo , Dopamina/metabolismo , Proteínas de Escherichia coli/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Simulação por Computador , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/fisiologia , Humanos , Simulação de Acoplamento Molecular , Fosforilação , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Oligoelementos/análise
8.
Neuropharmacology ; 175: 108197, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544482

RESUMO

Temporomandibular Disorder (TMD) patients report amplification of pain in the masticatory muscles after psychological trauma or stressful conditions. The mechanisms underlying this phenomenon are yet to be elucidated. This study combined immunohistochemistry with single cell in vivo electrophysiology recordings of masticatory muscle afferent fibers to investigate the role of α1-adrenergic receptors in muscle nociception. It was found that a subset of trigeminal afferent fibers which innervate the masseter and temporal muscles expressed α1a, α1b and α1d receptors, including a smaller number of putative nociceptors which co-expressed TrpV1 receptors. Local injection of the selective α1 adrenergic receptor agonist phenylephrine into masticatory muscle decreased and increased the mechanical activation threshold of slow and fast conducting afferent fibers, respectively. This effect was reversed by co-administration of the α1 selective antagonist terazosin. To rule out the possibility that local ischemia was responsible for the observed effect of phenylephrine on masticatory muscle afferent fibers, additional experiments were conducted where blood flow to the masticatory muscle was reduced by common carotid artery occlusion. This investigation found that muscle blood flow occlusion increased the mechanical activation threshold of the majority of masticatory muscle afferent fibers unrelated to conduction velocity. These findings suggest that under conditions of increased sympathetic tone, such as those related to stress, noradrenaline may sensitize masticatory muscle nociceptors to increase pain and desensitize muscle proprioceptors to alter muscle tone, through activation of α1 receptors.


Assuntos
Músculos da Mastigação/fisiologia , Nociceptividade/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Nervo Trigêmeo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 1/administração & dosagem , Vias Aferentes/fisiologia , Animais , Feminino , Masculino , Músculos da Mastigação/inervação , Ratos Sprague-Dawley
9.
Exp Brain Res ; 238(5): 1293-1303, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32322928

RESUMO

Somatosensory afferent transmission strength is controlled by several presynaptic mechanisms that reduce transmitter release at the spinal cord level. We focused this investigation on the role of α-adrenoceptors in modulating sensory transmission in low-threshold myelinated afferents and in pathways mediating primary afferent depolarization (PAD) of neonatal mouse spinal cord. We hypothesized that the activation of α-adrenoceptors depresses low threshold-evoked synaptic transmission and inhibits pathways mediating PAD. Extracellular field potentials (EFPs) recorded in the deep dorsal horn assessed adrenergic modulation of population monosynaptic transmission, while dorsal root potentials (DRPs) recorded at root entry zone assessed adrenergic modulation of PAD. We found that noradrenaline (NA) and the α1-adrenoceptor agonists phenylephrine and cirazoline depressed synaptic transmission (by 15, 14 and 22%, respectively). DRPs were also depressed by NA, phenylephrine and cirazoline (by 62, 30, and 64%, respectively), and by the α2-adrenoceptor agonist clonidine, although to a lower extent (20%). We conclude that NA depresses monosynaptic transmission of myelinated afferents onto deep dorsal horn neurons via α1-adrenoceptors and inhibits interneuronal pathways mediating PAD through the activation of α1- and α2-adrenoceptors. The functional significance of these modulatory actions in shaping cutaneous and muscle sensory information during motor behaviors requires further study.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Fenômenos Eletrofisiológicos/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Neurônios Aferentes/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Vias Neurais/fisiologia , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
10.
Sci Rep ; 10(1): 5390, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214185

RESUMO

Pulmonary veins (PV) are involved in the pathophysiology of paroxysmal atrial fibrillation. In the rat, left atrium (LA) and PV cardiomyocytes have different reactions to α1-adrenergic receptor activation. In freely beating atria-PV preparations, we found that electrical field potential (EFP) originated from the sino-atrial node propagated through the LA and the PV. The α1-adrenergic receptor agonist cirazoline induced a progressive loss of EFP conduction in the PV whereas it was maintained in the LA. This could be reproduced in preparations electrically paced at 5 Hz in LA. During pacing at 10 Hz in the PV where high firing rate ectopic foci can occur, cirazoline stopped EFP conduction from the PV to the LA, which allowed the sino-atrial node to resume its pace-making function. Loss of conduction in the PV was associated with depolarization of the diastolic membrane potential of PV cardiomyocytes. Adenosine, which reversed the cirazoline-induced depolarization of the diastolic membrane potential of PV cardiomyocytes, restored full over-shooting action potentials and EFP conduction in the PV. In conclusion, selective activation of α1-adrenergic receptors results in the abolition of electrical conduction within the PV. These results highlight a potentially novel pharmacological approach to treat paroxysmal atrial fibrillation by targeting directly the PV myocardium.


Assuntos
Fibrilação Atrial/fisiopatologia , Veias Pulmonares/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Potenciais de Ação/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Fibrilação Atrial/metabolismo , Condutividade Elétrica , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Masculino , Potenciais da Membrana , Miocárdio/patologia , Miócitos Cardíacos/patologia , Veias Pulmonares/fisiologia , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 1/fisiologia , Nó Sinoatrial/fisiopatologia
11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 42(6): 815-819, 2020 Dec 30.
Artigo em Chinês | MEDLINE | ID: mdl-33423731

RESUMO

Kidney is one of the important organs of the body.With both excretory and endocrine functions,it plays a vital role in regulating the normal physiological state.As a precursor of the nitric oxide(NO)synthesis in vivo,L-arginine is involved in intracellular and intercellular signaling via NO,a vasoactive factor,thus plays a key role in maintaining the normal physiological functions of the kidney.Alpha1-adrenergic receptor(α1-AR)mediates sympathetic nerves to regulate the heart,blood vessels,and nervous system of the body.The α1-AR distributed in vascular smooth muscle mainly mediates vasoconstriction.The responsiveness of α1-AR to adrenergic agonists decreases in rat models of kidney failure,diabetes,hypertension,and left ventricular hypertrophy,which affects the hemodynamic state and vascular tone of the kidney.Here we analyze the ways via which L-arginine improves the responsiveness of α1-AR to its agonists by ellucidating the action mode of NO/α1-AR and their effects on renal functions.


Assuntos
Arginina/fisiologia , Rim/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Animais , Músculo Liso Vascular , Óxido Nítrico/fisiologia , Ratos , Insuficiência Renal/fisiopatologia , Transdução de Sinais , Vasoconstrição
12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-878683

RESUMO

Kidney is one of the important organs of the body.With both excretory and endocrine functions,it plays a vital role in regulating the normal physiological state.As a precursor of the nitric oxide(NO)synthesis


Assuntos
Animais , Ratos , Arginina/fisiologia , Rim/fisiologia , Músculo Liso Vascular , Óxido Nítrico/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Insuficiência Renal/fisiopatologia , Transdução de Sinais , Vasoconstrição
13.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861195

RESUMO

Sphingosine-1-phosphate (S1P) has been implicated recently in the physiology and pathology of the cardiovascular system including regulation of vascular tone. Pilot experiments showed that the vasoconstrictor effect of S1P was enhanced markedly in the presence of phenylephrine (PE). Based on this observation, we hypothesized that S1P might modulate α1-adrenergic vasoactivity. In murine aortas, a 20-minute exposure to S1P but not to its vehicle increased the Emax and decreased the EC50 of PE-induced contractions indicating a hyperreactivity to α1-adrenergic stimulation. The potentiating effect of S1P disappeared in S1P2 but not in S1P3 receptor-deficient vessels. In addition, smooth muscle specific conditional deletion of G12/13 proteins or pharmacological inhibition of the Rho-associated protein kinase (ROCK) by Y-27632 or fasudil abolished the effect of S1P on α1-adrenergic vasoconstriction. Unexpectedly, PE-induced contractions remained enhanced markedly as late as three hours after S1P-exposure in wild-type (WT) and S1P3 KO but not in S1P2 KO vessels. In conclusion, the S1P-S1P2-G12/13-ROCK signaling pathway appears to have a major influence on α1-adrenergic vasoactivity. This cooperativity might lead to sustained vasoconstriction when increased sympathetic tone is accompanied by increased S1P production as it occurs during acute coronary syndrome and stroke.


Assuntos
Lisofosfolipídeos/farmacologia , Receptores Adrenérgicos alfa 1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Amidas/farmacologia , Animais , Sinergismo Farmacológico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenilefrina/farmacologia , Piridinas/farmacologia , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Quinases Associadas a rho/antagonistas & inibidores
14.
Life Sci ; 239: 117048, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730867

RESUMO

Benign prostatic hyperplasia (BPH) is an aging-related and progressive disease linked to an up-regulation of α1-adrenoceptors. The participation of EGF receptors (EGFR) in the GPCRs' signalosome has been described but so far data about the contribution of these receptors to prostatic stromal hyperplasia are scanty. We isolated and cultured vimentin-positive prostate stromal cells obtained from BPH patients. According to intracellular Ca2+ measurements, cell proliferation and Western blotting assays, these cultured hyperplastic stromal cells express functional α1-adrenoceptors and EGFR, and proliferate in response to the α1-adrenoceptor agonist phenylephrine. Interestingly, in these cells the inhibition of EGFR signaling with GM6001, CRM197, AG1478 or PD98059 was associated with full blockage of α1-adrenoceptor-mediated cell proliferation, while cell treatment with each inhibitor alone did not alter basal cell growth. Moreover, the co-incubation of AG1478 (EGFR inhibitor) with α1A/α1D-adrenoceptor antagonists showed no additive inhibitory effect. These findings highlight a putative role of EGFR signaling to α1-adrenoceptor-mediated human prostate hyperplasia, suggesting that the inhibition of this transactivation cascade could be useful to reduce BPH progression.


Assuntos
Receptores ErbB/metabolismo , Hiperplasia Prostática/metabolismo , Receptores Adrenérgicos alfa 1/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Humanos , Hiperplasia/metabolismo , Masculino , Piperazinas/farmacologia , Cultura Primária de Células , Próstata/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Estromais
15.
Biol Pharm Bull ; 42(10): 1741-1745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31582662

RESUMO

Our previous studies have shown that phenylephrine-induced contraction of cutaneous arteries is primarily mediated via α1A-adrenoceptors, but not α1D-adrenoceptors that generally mediate vascular contraction, and that the larger part of the contraction is induced in a voltage-dependent Ca2+ channel (VDCC)-independent manner. Here, we investigated the mechanism underlying the smaller part of the α1A-adrenoceptor-mediated contraction, i.e., VDCC-dependent one, in cutaneous arteries. Isometric contraction was measured with wire myograph in endothelium-denuded tail and iliac arterial rings isolated from male Wistar rats. LOE908 (10 µM), a cation channel blocker, partially inhibited the contraction induced by phenylephrine in tail and iliac arteries. Nifedipine (10 µM) further suppressed the phenylephrine-induced contraction that remained in the presence of LOE908 (10 µM) in iliac arteries but barely in tail arteries, suggesting that phenylephrine-induced depolarization in tail arteries is due to the activation of LOE908-sensitive cation channels. In iliac arteries, the contraction induced by A-61603, a specific α1A-adrenoceptor agonist, was also partially inhibited by LOE908 (10 µM); however, nifedipine had little effect on the A-61603-induced contraction that remained in the presence of LOE908 (10 µM), suggesting that depolarization mediated via α1A-adrenoceptors is due to the activation of LOE908-sensitive cation channels even in iliac arteries. These results suggest that membrane depolarization mediated via α1Α-adrenoceptors is caused by cation influx through LOE908-sensitive cation channels. Less contribution of VDCC to phenylephrine-induced contraction in tail arteries compared to in iliac arteries is likely due to that α1Α-adrenoceptor-mediated activation of VDCC is caused only by depolarization via cation influx through LOE908-sensitive cation channels.


Assuntos
Canais de Cálcio/fisiologia , Artéria Ilíaca/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Cauda/irrigação sanguínea , Acetamidas/farmacologia , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Imidazóis/farmacologia , Isoquinolinas/farmacologia , Masculino , Nifedipino/farmacologia , Fenilefrina/farmacologia , Ratos Wistar , Cauda/fisiologia , Tetra-Hidronaftalenos/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
16.
Biochem Pharmacol ; 169: 113628, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31491415

RESUMO

KCNQ1 (Kv7.1 or KvLQT1) plays important physiological roles in various tissues forming potassium channels with KCNE subunits. Among the channels formed by KCNQ1 and KCNE subunits, the best studied is the slow delayed rectifier potassium channel in the heart, the IKs (KCNQ1/KCNE1) channel, which is critical for repolarization of cardiac action potential. The KCNQ1 channel is internalized by Nedd4/Nedd4-like ligase-dependent ubiquitination. It is also reported that phosphorylation of KCNE1 by PKC results in internalization of the KCNQ1/KCNE1 channel. Because we have observed down-regulation of KCNQ1/KCNE1 currents by activation of the α1-adrenergic receptor (α1AR) that activates PKC, this study investigated whether α1AR causes internalization of the KCNQ1 protein. We fused HaloTag to the extracellular region of KCNQ1 (Halo-KCNQ1) and co-expressed it with α1ARs in HEK293 cells. The KCNQ1 protein on the cell surface was selectively labeled with membrane-impermeable HaloTag ligands, and changes in its localization were monitored by confocal fluorescence microscopy. Activation of α1AAR and α1BAR caused marked internalization of KCNQ1, which was not KCNE1-dependent. Internalization of KCNQ1 by α1AR activation was inhibited by disruption of the PY motif or the YXXΦ motif in the C-terminus. Double staining for the receptor and the channel revealed that KCNQ1 internalization was independent of α1AR internalization. Our results suggest that α1AR-mediated direct internalization of KCNQ1 is AP2/clathrin-dependent and may be triggered by ubiquitination of KCNQ1 via the AMP dependent kinase (AMPK)/Nedd4-2 pathway. When phenylephrine was applied to rat neonatal cardiomyocytes transfected with KCNQ1 and α1AR, the KCNQ1 protein was internalized. The internalization of KCNQ1 by α1AR would affect pathophysiology in a variety of tissues expressing KCNQ1, which merits further in vivo study.


Assuntos
Canal de Potássio KCNQ1/metabolismo , Receptores Adrenérgicos alfa 1/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Células HEK293 , Humanos , Miócitos Cardíacos/metabolismo , Proteína Quinase C/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores da Transferrina/análise
17.
FASEB J ; 33(11): 12240-12252, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431066

RESUMO

It is recognized that stress can induce cardiac dysfunction, but the underlying mechanisms are not well understood. The present study aimed to test the hypothesis that chronic negative stress leads to alterations in DNA methylation of certain cardiac genes, which in turn contribute to pathologic remodeling of the heart. We found that mice that were exposed to chronic restraint stress (CRS) for 4 wk exhibited cardiac remodeling toward heart failure, as characterized by ventricular chamber dilatation, wall thinning, and decreased contractility. CRS also induced cardiac arrhythmias, including intermittent sinus tachycardia and bradycardia, frequent premature ventricular contraction, and sporadic atrioventricular conduction block. Circulating levels of stress hormones were elevated, and the cardiac expression of tyrosine hydroxylase, a marker of sympathetic innervation, was increased in CRS mice. Using reduced representation bisulfite sequencing, we found that although CRS did not lead to global changes in DNA methylation in the murine heart, it nevertheless altered methylation at specific genes that are associated with the dilated cardiomyopathy (DCM) (e.g., desmin) and adrenergic signaling of cardiomyocytes (ASPC) (e.g., adrenergic receptor-α1) pathways. We conclude that CRS induces cardiac remodeling and arrhythmias, potentially through altered methylation of myocardial genes associated with the DCM and ASPC pathways.-Zhang, P., Li, T., Liu, Y.-Q., Zhang, H., Xue, S.-M., Li, G., Cheng, H.-Y.M., Cao, J.-M. Contribution of DNA methylation in chronic stress-induced cardiac remodeling and arrhythmias in mice.


Assuntos
Arritmias Cardíacas/etiologia , Metilação de DNA , Estresse Psicológico/complicações , Remodelação Ventricular/fisiologia , Animais , Doença Crônica , Coração/inervação , Insuficiência Cardíaca/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos alfa 1/fisiologia
18.
Toxins (Basel) ; 11(7)2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288453

RESUMO

Oxaliplatin is a chemotherapeutic agent used for metastatic colon and other advanced cancers. Most common side effect of oxaliplatin is peripheral neuropathy, manifested in mechanical and cold allodynia. Although the analgesic effect of bee venom has been proven to be effective against oxaliplatin-induced peripheral neuropathy, the effect of its major component; melittin has not been studied yet. Thus, in this study, we investigated whether melittin has an analgesic effect on oxaliplatin-induced allodynia. Intraperitoneal single injection of oxaliplatin (6 mg/kg) induced mechanical and cold allodynia, resulting in increased withdrawal behavior in response to von Frey filaments and acetone drop on hind paw. Subcutaneous melittin injection on acupoint ST36 (0.5 mg/kg) alleviated oxaliplatin-induced mechanical and cold allodynia. In electrophysiological study, using spinal in vivo extracellular recording, it was shown that oxaliplatin-induced hyperexcitation of spinal wide dynamic range neurons in response to peripheral stimuli, and melittin administration inhibited this neuronal activity. In behavioral assessment, analgesic effect of melittin was blocked by intrathecal α1- and α2- adrenergic receptor antagonists administration. Based on these results, we suggest that melittin could be used as an analgesic on oxaliplatin-induced peripheral neuropathy, and that its effect is mediated by activating the spinal α1- and α2-adrenergic receptors.


Assuntos
Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Meliteno/uso terapêutico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Analgésicos/farmacologia , Animais , Antineoplásicos , Temperatura Baixa , Hiperalgesia/induzido quimicamente , Idazoxano/farmacologia , Meliteno/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Oxaliplatina , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Prazosina/farmacologia , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Tato
19.
Neuron ; 103(4): 702-718.e5, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227310

RESUMO

The locus coeruleus (LC) supplies norepinephrine (NE) to the entire forebrain and regulates many fundamental brain functions. Studies in humans have suggested that strong LC activation might shift network connectivity to favor salience processing. To causally test this hypothesis, we use a mouse model to study the effect of LC stimulation on large-scale functional connectivity by combining chemogenetic activation of the LC with resting-state fMRI, an approach we term "chemo-connectomics." We show that LC activation rapidly interrupts ongoing behavior and strongly increases brain-wide connectivity, with the most profound effects in the salience and amygdala networks. Functional connectivity changes strongly correlate with transcript levels of alpha-1 and beta-1 adrenergic receptors across the brain, and functional network connectivity correlates with NE turnover within select brain regions. We propose that these changes in large-scale network connectivity are critical for optimizing neural processing in the context of increased vigilance and threat detection.


Assuntos
Conectoma , Locus Cerúleo/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Adrenérgicos beta 1/fisiologia , Animais , Ansiedade/fisiopatologia , Clozapina/farmacologia , Corpo Estriado/metabolismo , Drogas Desenhadas/farmacologia , Dopamina/metabolismo , Comportamento Exploratório/fisiologia , Neuroimagem Funcional , Genes fos , Locus Cerúleo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Norepinefrina/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , Receptores Adrenérgicos alfa 1/biossíntese , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos beta 1/biossíntese , Receptores Adrenérgicos beta 1/genética , Receptores de Droga/fisiologia , Teste de Desempenho do Rota-Rod , Regulação para Cima/efeitos dos fármacos
20.
Toxicol Appl Pharmacol ; 376: 95-106, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31145917

RESUMO

Medical therapy of lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) targets smooth muscle contraction in the prostate, for which α1A-adrenoceptor (α1A-AR) antagonists have been considered to be the primary therapeutic method. We investigated the effects and underlying mechanisms of isocorynoxeine (ICN), one of indole alkaloids from Uncaria, on the treatment of LUTS secondary to BPH via α1A-ARs in mice. The effect of ICN on prostatic contractility was studied via myographic measurements in the prostates of rabbits. The effects of ICN on bladder function, serum-hormone levels, bladder histology, and prostate histology were determined in testosterone propionate-induced prostatic hyperplasic wild-type (WT) and α1A-AR knockout (α1A-KO) mice. The cytotoxicity of ICN in cultured human prostatic stromal cells (WPMY-1) was assessed by the following: a cell-counting kit, measuring the relaxant effect on WPMY-1 by a collagen gel contraction assay, intracellular Ca2+ mobilization indicated by Fluo-4, cytoskeletal organization by phalloidin staining, and expressions of α1A-AR-mediated key messengers by western blot analyses. ICN non-competitively antagonized the contractions of prostates induced by α1A-AR agonists. ICN treatment improved bladder functions in prostatic hyperplasic WT mice, whereas it failed to ameliorate bladder functions in prostatic hyperplasic α1A-KO mice. In WPMY-1, ICN relaxed cell contractions on collagen gels, disrupted F-actin organization, inhibited α1A-AR agonist-stimulated Ca2+ mobilization, and antagonized α1A-ARs via the RhoA/ROCK2/MLC signaling pathway. Our results suggest that ICN may be a promising therapeutic drug for targeting α1A-ARs in the treatment of BPH/LUTS.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Alcaloides Indólicos/uso terapêutico , Hiperplasia Prostática/complicações , Uncaria/química , Doenças Urológicas/tratamento farmacológico , Doenças Urológicas/etiologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Músculo Liso/fisiopatologia , Próstata/efeitos dos fármacos , Próstata/fisiopatologia , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/fisiopatologia , Coelhos , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/fisiologia , Células Estromais , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...